VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Main & Backlog Examinations, July-2023

Transform Techniques, Probability & Statistics

(Common to CSE & AIML)

Time: 3 hours

Max. Marks: 60

Note: Tables of Area under the normal curves, t-test, F-test & Chi-square test will be provided

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Give an example of a function with justification, which doesn't satisfy any one of the Dirichlet's conditions of a Fourier series.	2	1	1	1,12
2.	If $f(x) = \sqrt{1 - \cos x}$, $0 < x < 2\pi$ then determine the Fourier Co-efficient a_0 .	2	1	1	1,12
3.	State and prove Shifting property of Fourier Transforms.	2	1	2	1,12
4.	Define Fourier Sine and cosine Transforms of $f(x)$.	2	1	2	1,12
5.	Define Discrete Random variable with a real life examples.	2	1	3	1,12
6.	Find c for the continuous random variable X whose p. d. f is given by $f(x) = \begin{cases} cx(2-x), & if 0 \le x \le 2 \\ 0, & otherwise \end{cases}$ where c is a constant.	2	2	3	1,12
7.	Write any two properties of t-distribution.	2	1	4	1,12
8.	Define Level of Significance.	2	1	4	1,12
9.	Define Correlation.	2	1	5	1,12
10.	Write the normal equations of the Parabola $R = aV^2 + bV + c$.	2	1	5	1,12
	$Part-B (5 \times 8 = 40 Marks)$				
11. a)	Obtain Fourier series for the function $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$	4	2	1	1,12
b)	Given $f(x) = \cos x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$.	1	2	1	1,12
12. a)	Find the Fourier Sine Transform of $\frac{e^{-ax}}{x}$	3	2	2	1,12
b)	Find the Fourier Transform of $f(x) = \begin{cases} 1 & \text{for } x < 1 \\ 0 & \text{for } x > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$	5	2	2	1,12
13. a)	The density functions of a random variable X is $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & otherwise \end{cases}$ Find $E(X), E(X^2) \& V(X)$.	4	3	3	1,12

b)	A Random variable gives measurements X between 0 & 1 with a probability function $f(x) = \begin{cases} 12x^3 - 21x^2 + 10x, & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$	4	2	3	1,12
li n	0, elsewhere	-			
	Find i) $P(X \le \frac{1}{2})$ and $P\left(X \ge \frac{1}{2}\right)$				
es de	ii) Find a number $k \ni P(X \le k) = \frac{1}{2}$.	ks.			
14. a)	The heights of 10 males of a given locality are found to be 70,67,62,68,61,68,70,64,64,66 inches. Is it reasonable to believe that the average height is greater than 64 inches? Test at 5% significant level.	4	3	4	1,12
b)	A die is thrown 264 times with the following results.	4	2	4	1,12
	No. appeared on the die 1 2 3 4 5 6	. ,			
	Frequency 40 32 28 58 54 52				
	Show that the die is biased.				
15. a)	An experiment gave the following values. Find the least square fit of	4	3	5	1,12
	$v = at^b$.		3	,	1,12
	<i>v(ft/min)</i> 350 400 500 600				
1.)	t(min) 61 26 7 26				
b)	Calculate the correlation coefficient for the following heights (inches) of fathers (X) and their sons (Y)	4	3	5	1,12
	X 65 66 67 67 68 69 70 72				
	Y 67 68 65 68 72 72 69 71				
16. a)	Using Half-range sine series for $f(x) = 1$ in $0 < x < \pi$,	4	3	1	1,12
	Show that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$				
b)	Find the Fourier Cosine transform of e^{-ax} and hence	4	3	2	1,12
	evaluate $\int_0^\infty \frac{\cos \lambda x}{x^2 + a^2} dx$.				,
17.	Answer any <i>two</i> of the following:				
a)	The marks obtained in statistics in a certain examination found to be	4	3	3	1,12
, s	normally distributed. If 15 % of the students ≥ 60 marks, 40% < 30 marks. Find the mean and Standard deviation.				-,
b)	If two independent random samples of sizes $n_1 = 13$, $n_2 = 7$ are taken from a normal population. Estimate the level of significance that the variance of the first sample will be at least four times as large as that of the second sample.	4	3	4	1,12
c)	Prove that $ \nu \leq 1$, where ν is coefficient of correlation.	4	2	5	1,12
14.1					-,

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	22%
ii)	Blooms Taxonomy Level - 2	35%
iii)	Blooms Taxonomy Level – 3 & 4	43%